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The ability to analyze, interpret, and draw insights from data and data visualizations is quickly
becoming a necessary skill for success across multiple disciplines and careers. However, people
struggle to make meaning from data, and traditional data-science curriculum falls short of
emphasizing its relevance to underrepresented students. To create opportunities for meaningful
applications of data-science for diverse students, we developed and implemented an online
learning module focused on engaging N = 298 undergraduate students at a Hispanic Serving
Institution (HSI) in an analysis of place-based soil data. Using a pretest posttest study design, we
found that student’s perceptions of data-science relevance microbiology knowledge improved.
We also inductively coded qualitative survey responses and used automated text analysis to
explore how students framed “relevance” and how perceptions changed from pretest-to-posttest.
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Data literacy—decision-making through statistical methods and techniques—is essential
across multiple industries (Ben-Zvi & Garfield, 2008; Gould, 2017; Steen, 2001). With the
increasing volume of data in today’s world, being able to analyze, interpret, and draw insights
from data and data visualizations is becoming essential for career success, likened to reading and
mathematical literacy (Borner et al., 2019; Gal, 2002). Despite the global demand to improve
data science education, traditional courses are not meeting the needs of those seeking training
(Baumer, 2015), and statistics education, while firmly grounded in mathematics curriculum
(Ben-Zvi & Garfield, 2008; NCTM, 2000), does not traditionally tap into topics that students
find relevant, such as interdisciplinary and sociopolitical applications (Kokka, 2019; Weiland,
2017). This disconnect contributes to a lack of diversity with regards to race and gender in math-
intensive STEM fields (NSF, 2015). Hispanic students, in particular, are underrepresented in
STEM fields, particularly those related to statistics and data science (Fry et al., 2021).

Theoretical Framework

To frame how soil data collection and analysis can support science learning and perceptions
of data science relevance for underrepresented students, we integrate frameworks of Conceptual
Change, Data Literacy, and Place-Based Education. Conceptual change is a process where
individuals restructure their conceptual knowledge to be more aligned with experts after
engaging with novel information (Dole & Sinatra, 1998; Lombardi et al., 2016). In these models,
learner characteristics (e.g., their beliefs, motivation, and emotions) and information
characteristics (e.g., comprehensibility, compellingness, and relevance) interact to determine
students’ levels of cognitive engagement. Higher levels of engagement, along with shifts in
motivation and emotion, predict more serious consideration (or reconsiderations) of whether
scientific ideas are plausible (Lombardi et al., 2016), and higher likelihood of conceptual change



(see Figure S1 in the Supplemental Materials [SM]). Of these many factors, evidence suggests
that data comprehensibility and compellingness can bolster student engagement and conceptual
change (Thacker, 2023; 2024; Thacker et al., 2024; 2025; Thacker & Sinatra, 2022).

Though there is no consensus on a definition, the term “data literacy” refers to statistical
competencies, methods, and techniques that facilitate decision-making (Gould, 2017). It includes
competencies of understanding, acquiring, reading, interpreting, evaluating, managing,
visualizing, and using data (Borner et al., 2019; Carlson & Johnston, 2014; Kim et al., 2023;
Prado & Marzal, 2013; Qiao et al., 2024; Ridsdale et al., 2015). This study focuses on promoting
students’ translation of relevant problems of interest into problems of data (Borner et al. 2019).
That is, students must first link data to meaningful problems and identify measurable variables.

A useful framework for contextualizing data and creating personally relevant data
experiences for students is to connect to their “sense of place” (Semken et al., 2017). Place-based
learning is grounded in students’ local contexts and systems of meaning such as culture, history,
and community. Place-based learning is ideal for microbiology, geoscience, and agricultural
education because of their direct relation to one’s lived environment and can be used as a means
to enhance culturally inclusive practices for diverse learners (NGSS, 2013; Semken et al., 2017).
However, its effectiveness for diverse learners and the role of motivation remain understudied
(Gosselin et al., 2016; Semken et al., 2017). We address these gaps in three research questions:

e RQI. To what extent do student’s perceptions of data science relevance and microbiology
knowledge change after exploring place-based soil data and data visualizations?

e RQ2. How do students describe the relevance of data-science? What levels of analytical
thinking are evident in those descriptions? And how do these dimensions change after
exploring place-based soil data and data visualizations?

e RQ3. What soil-related variables do students identify as being relevant for data exploration?
And how do these perceptions change from pre- to post-intervention?

Methods

Intervention Developed

Prior to conducting the current study, we developed and tested an interdisciplinary data-
literacy/microbiology learning intervention (see Thacker et al., 2025). The intervention is an
asynchronous, open-access learning module developed in SoftChalk Cloud that introduces
undergraduate students enrolled in a microbiology lab course to the Tiny Earth Initiative (Hurley
et al., 2021), with a particular focus on introducing students to data-science applications. Tiny
Earth is a national initiative concentrated on identifying new antibiotics in soil to combat the
escalating antibiotic resistance crisis by encouraging undergraduate students to collect soil from
the place where they live, study the bacteria in that soil, analyze the bacteria for antibiotic
activity, and add their data to an online repository. The module introduced antibiotic resistance,
microbial ecology factors influencing antibiotic-producing bacteria, guided research question
generation, and included a tutorial on interpreting soil data visualizations. Students explored
whether a selection of variables (landform type, soil type, annual precipitation, pH, and annual
air temperature) were related to the percentage of antibiotic producers in a selection of map
visualizations generated from the Tiny Earth national repository data (see SM, Figure S2).
Participants and Procedures

To answer our research questions, we recruited N = 298 undergraduate students from an HSI
in a southwestern state of the USA over the course of three semesters. Students reported their
year of study (1% first year, 13% second year, 38% third year, 38% fourth year, and 10% other),
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gender (75% Female, 22% Male, 1% Nonbinary, 2% prefer not to say) ethnicity (55% Hispanic),
race (1% American Indian/Alaska Native, 12% Asian, 7% Black/African- American, 9% Two or
more races, 62% White/Caucasian, 9% Other race), and whether they were enrolled in a STEM
major (79% STEM major, 15% not STEM, 1% plan to enroll in a STEM major, 4% Other).

All participants first completed a researcher-created 12 item pretest questionnaire measuring
their microbiology knowledge, which was averaged and converted to percentage points for all
analyses. Students also completed a three-item data literacy measure based on principles from
Borner et al. (2019). Two open-ended item prompted students to “Explain why you think that
data science is or is not relevant for the field of soil microbiology. Provide examples if possible.”
The second item prompted students to, “Please make a list of any variables that might be relevant
for data scientists to investigate when exploring information about soil.” The third item was a
single item assessing students’ perceptions of data science relevance on a scale from 1 = Not¢ at
all relevant to 5 = Very relevant (see SM, Appendix B-C).

After the pretest, learners completed the ~60 minute module and then completed an identical
post-test of microbiology knowledge and data literacy. Cronbach’s alpha for the microbiology
knowledge scale was .65 at pretest and .71 at posttest.

Findings

RQ1: Pre-Post Improvements in Data Science Relevance and Microbiology Knowledge

To investigate whether there were significant changes in mean data relevance perceptions
and microbiology knowledge, we used paired Wilcoxon signed rank tests to account for skewed
distributions. Students’ perceptions of data-science relevance significantly improved from pretest
to posttest (Mpre=4.2, SDpre=0.88, Mposi=4.5, SDposi=0.81; W=2425, p<.001, Cohen’s d=.33), as
did microbiology knowledge (Mpre=76%, SDpre=17, Mpost=83%, SDpos=16; W=4326, p<.001,
d=.39). For visualizations of distributions, see Figure S3 in the supplemental materials.
RQ2: Qualitative Analyses of Student Perceptions of Data-Science Relevance

To explore how students perceived the relevance of data-science relevance in soil
microbiology analysis, we analyzed their open-ended responses in two ways. The first was by
using traditional inductive coding processes. Two graduate student researchers openly-coded
responses to the prompt: “Explain why you think that data science is or is not relevant for the
field of soil microbiology...” They read each student’s response at pretest and posttest and
categorized them freely. We then met to discuss common codes, emerging themes related to all
student responses, and collectively developed a codebook (see Appendix A in SMs) which we
used to systematically recode all responses (Saldafa, 2021; Chamraz; 2015). Four dimensions
emerged: data-science offers: (a) understanding, and illuminates, explains, or provides insight
into properties of soil by offering comparing and contrasting information or showing trends; (b)
utility to address real-world problems in specific fields, using specific analytic techniques, by
visualizing problems, saving time, and other vague applications; (c) is vaguely useful or relevant
with unclear reasoning for why, and (d) that data-science is not relevant in their perspective.! A
summary of the results are presented in SM, Table S1, and examples of student responses for
each code in Appendix A. Overall, we found that the most common code was utility perceptions,
noted by 74% of students at pretest, 68% at posttest, then understanding (34% pre, 35% post),
followed by vague explanations (15% pre, 16% post), and “not relevant” (5% pre, 3.7% post).

! The two coders independently applied the codebook to the full dataset. Interrater reliability analysis revealed high
percent agreement (average 91%) but low kappa values due to infrequent code use and data sparsity. Coders met to
reconcile discrepancies and arrived at consensus-codes for all reported analyses.



The second way in which we coded the qualitative data was using LIWC 2022 (Linguistic
Inquiry and Word Count) a validated automated text analysis program (Boyd et al., 2022).
Specifically, we assessed students’ use of words pertaining to analytical thinking dimensions,
which demonstrate cognitive skill and engagement (see, e.g., Markowitz, 2023; Pennebaker et
al., 2014) at pretest and posttest and compared them. Across the five dimensions of analytic
cognitive processes (insight, causation, discrepancy, tentativeness, certitude, and differentiation),
Wilcoxon signed rank tests revealed significantly lower levels of “discrepancy” language at
posttest (p=.006, d= -.22), and significantly lower levels of “tentative- ness” at posttest (p=.006,
d=-.19; see SM, Table S1 for means and SDs across analytic thinking).

RQ3: Relevant Soil-Variables Identified

We also used LIWC to analyze the list of variables that students provided at pretest and
posttest that they perceived would be relevant in data-exploration. See SM, Table S2 for pre-post
word counts, word clouds, and differences in frequencies. Comparing pre and post, it is evident
that students became more specific in their language, salience of “moisture,” “temperature, “pH,”
and other terms at posttest compared to pretest, while “soil” remains prominent across both. In a
comparative analysis between pretest-and-posttest that highlights words that are more associated
with pre vs post, we see that “animals” and “organisms” are more prominently related to the
pretest, whereas more chemical and landscape factors are more prominent in the posttest.

Discussion

We sought to develop a learning intervention that promotes data-literacy skills as they apply
to place-based soil microbiology learning experiences. We found that students significantly
improved their perceptions of data science relevance and science knowledge from pretest to
posttest, consistent with prior theory and evidence (Lombardi et al., 2016; Thacker et al., 2025).

Student’s open-ended explanations revealed that students tended to explain data-science
relevance in terms of its utility across medical and STEM professions and its capability to help
scientists better understand properties of soil-data. This suggests that students are predisposed to
expect data-tools to support their understanding of multidisciplinary topics and appear to be
eager to learn and apply what they know to problem-solve in multiple domains.

Automated text analysis revealed that students used less discrepant and tentative language at
posttest compared to pretest when discussing data relevance, indicating improved levels of
certainty. We also found that students identified lists of soil-related variables that became more
specific and specialized over time. Terms such as “animals” and “organisms” became less
emphasized in place of more relevant microbiological properties such as “pH”, “nitrogen,” and
“chemical.” This suggests that students improved in terms of confidence and identification of
relevant variables, both of which are critical for persisting in data-literate professions.

Generally speaking, our findings demonstrate that data-literacy supports combined with
place-based learning experiences can dually enhance students’ knowledge, motivation, and data-
literacy in terms of identifying analytical variables (Lombardi et al., 2016; Semken et al., 2017;
Borner et al., 2019; Carlson & Johnston, 2014). We encourage researchers and practitioners to
ground data-analysis experiences in real world and place-based scenarios to help students
understand the scientific and societal factors underlying what they observe.
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