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The ability to analyze, interpret, and draw insights from data and data visualizations is quickly 
becoming a necessary skill for success across multiple disciplines and careers. However, people 
struggle to make meaning from data, and traditional data-science curriculum falls short of 
emphasizing its relevance to underrepresented students. To create opportunities for meaningful 
applications of data-science for diverse students, we developed and implemented an online 
learning module focused on engaging N = 298 undergraduate students at a Hispanic Serving 
Institution (HSI) in an analysis of place-based soil data. Using a pretest posttest study design, we 
found that student’s perceptions of data-science relevance microbiology knowledge improved. 
We also inductively coded qualitative survey responses and used automated text analysis to 
explore how students framed “relevance” and how perceptions changed from pretest-to-posttest. 
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Data literacy—decision-making through statistical methods and techniques—is essential 
across multiple industries (Ben-Zvi & Garfield, 2008; Gould, 2017; Steen, 2001). With the 
increasing volume of data in today’s world, being able to analyze, interpret, and draw insights 
from data and data visualizations is becoming essential for career success, likened to reading and 
mathematical literacy (Börner et al., 2019; Gal, 2002). Despite the global demand to improve 
data science education, traditional courses are not meeting the needs of those seeking training 
(Baumer, 2015), and statistics education, while firmly grounded in mathematics curriculum 
(Ben-Zvi & Garfield, 2008; NCTM, 2000), does not traditionally tap into topics that students 
find relevant, such as interdisciplinary and sociopolitical applications (Kokka, 2019; Weiland, 
2017). This disconnect contributes to a lack of diversity with regards to race and gender in math-
intensive STEM fields (NSF, 2015). Hispanic students, in particular, are underrepresented in 
STEM fields, particularly those related to statistics and data science (Fry et al., 2021). 

Theoretical Framework 
To frame how soil data collection and analysis can support science learning and perceptions 

of data science relevance for underrepresented students, we integrate frameworks of Conceptual 
Change, Data Literacy, and Place-Based Education. Conceptual change is a process where 
individuals restructure their conceptual knowledge to be more aligned with experts after 
engaging with novel information (Dole & Sinatra, 1998; Lombardi et al., 2016). In these models, 
learner characteristics (e.g., their beliefs, motivation, and emotions) and information 
characteristics (e.g., comprehensibility, compellingness, and relevance) interact to determine 
students’ levels of cognitive engagement. Higher levels of engagement, along with shifts in 
motivation and emotion, predict more serious consideration (or reconsiderations) of whether 
scientific ideas are plausible (Lombardi et al., 2016), and higher likelihood of conceptual change 
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(see Figure S1 in the Supplemental Materials [SM]). Of these many factors, evidence suggests 
that data comprehensibility and compellingness can bolster student engagement and conceptual 
change (Thacker, 2023; 2024; Thacker et al., 2024; 2025; Thacker & Sinatra, 2022).  

Though there is no consensus on a definition, the term “data literacy” refers to statistical 
competencies, methods, and techniques that facilitate decision-making (Gould, 2017). It includes 
competencies of understanding, acquiring, reading, interpreting, evaluating, managing, 
visualizing, and using data (Börner et al., 2019; Carlson & Johnston, 2014; Kim et al., 2023; 
Prado & Marzal, 2013; Qiao et al., 2024; Ridsdale et al., 2015). This study focuses on promoting 
students’ translation of relevant problems of interest into problems of data (Börner et al. 2019). 
That is, students must first link data to meaningful problems and identify measurable variables. 

A useful framework for contextualizing data and creating personally relevant data 
experiences for students is to connect to their “sense of place” (Semken et al., 2017). Place-based 
learning is grounded in students’ local contexts and systems of meaning such as culture, history, 
and community. Place-based learning is ideal for microbiology, geoscience, and agricultural 
education because of their direct relation to one’s lived environment and can be used as a means 
to enhance culturally inclusive practices for diverse learners (NGSS, 2013; Semken et al., 2017). 
However, its effectiveness for diverse learners and the role of motivation remain understudied 
(Gosselin et al., 2016; Semken et al., 2017). We address these gaps in three research questions:  

• RQ1. To what extent do student’s perceptions of data science relevance and microbiology 
knowledge change after exploring place-based soil data and data visualizations?  

• RQ2. How do students describe the relevance of data-science? What levels of analytical 
thinking are evident in those descriptions? And how do these dimensions change after 
exploring place-based soil data and data visualizations? 

• RQ3. What soil-related variables do students identify as being relevant for data exploration? 
And how do these perceptions change from pre- to post-intervention? 

Methods 
Intervention Developed 

Prior to conducting the current study, we developed and tested an interdisciplinary data-
literacy/microbiology learning intervention (see Thacker et al., 2025). The intervention is an 
asynchronous, open-access learning module developed in SoftChalk Cloud that introduces 
undergraduate students enrolled in a microbiology lab course to the Tiny Earth Initiative (Hurley 
et al., 2021), with a particular focus on introducing students to data-science applications. Tiny 
Earth is a national initiative concentrated on identifying new antibiotics in soil to combat the 
escalating antibiotic resistance crisis by encouraging undergraduate students to collect soil from 
the place where they live, study the bacteria in that soil, analyze the bacteria for antibiotic 
activity, and add their data to an online repository. The module introduced antibiotic resistance, 
microbial ecology factors influencing antibiotic-producing bacteria, guided research question 
generation, and included a tutorial on interpreting soil data visualizations. Students explored 
whether a selection of variables (landform type, soil type, annual precipitation, pH, and annual 
air temperature) were related to the percentage of antibiotic producers in a selection of map 
visualizations generated from the Tiny Earth national repository data (see SM, Figure S2). 
Participants and Procedures 

To answer our research questions, we recruited N = 298 undergraduate students from an HSI 
in a southwestern state of the USA over the course of three semesters. Students reported their 
year of study (1% first year, 13% second year, 38% third year, 38% fourth year, and 10% other), 

https://docs.google.com/document/d/1db0NqqZokSEKIxBUVlTowMNBaV-kA9nEt0K1Tb__JCg/edit?usp=sharing
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gender (75% Female, 22% Male, 1% Nonbinary, 2% prefer not to say) ethnicity (55% Hispanic), 
race (1% American Indian/Alaska Native, 12% Asian, 7% Black/African- American, 9% Two or 
more races, 62% White/Caucasian, 9% Other race), and whether they were enrolled in a STEM 
major (79% STEM major, 15% not STEM, 1% plan to enroll in a STEM major, 4% Other).  

All participants first completed a researcher-created 12 item pretest questionnaire measuring 
their microbiology knowledge, which was averaged and converted to percentage points for all 
analyses. Students also completed a three-item data literacy measure based on principles from 
Börner et al. (2019). Two open-ended item prompted students to “Explain why you think that 
data science is or is not relevant for the field of soil microbiology. Provide examples if possible.” 
The second item prompted students to, “Please make a list of any variables that might be relevant 
for data scientists to investigate when exploring information about soil.” The third item was a 
single item assessing students’ perceptions of data science relevance on a scale from 1 = Not at 
all relevant to 5 = Very relevant (see SM, Appendix B–C). 

After the pretest, learners completed the ~60 minute module and then completed an identical 
post-test of microbiology knowledge and data literacy. Cronbach’s alpha for the microbiology 
knowledge scale was .65 at pretest and .71 at posttest.  

Findings 
RQ1: Pre-Post Improvements in Data Science Relevance and Microbiology Knowledge 

To investigate whether there were significant changes in mean data relevance perceptions 
and microbiology knowledge, we used paired Wilcoxon signed rank tests to account for skewed 
distributions. Students’ perceptions of data-science relevance significantly improved from pretest 
to posttest (Mpre=4.2, SDpre=0.88, Mpost=4.5, SDpost=0.81; W=2425, p<.001, Cohen’s d=.33), as 
did microbiology knowledge (Mpre=76%, SDpre=17, Mpost=83%, SDpost=16; W=4326, p<.001, 
d=.39). For visualizations of distributions, see Figure S3 in the supplemental materials.  
RQ2: Qualitative Analyses of Student Perceptions of Data-Science Relevance 

To explore how students perceived the relevance of data-science relevance in soil 
microbiology analysis, we analyzed their open-ended responses in two ways. The first was by 
using traditional inductive coding processes. Two graduate student researchers openly-coded 
responses to the prompt: “Explain why you think that data science is or is not relevant for the 
field of soil microbiology…” They read each student’s response at pretest and posttest and 
categorized them freely. We then met to discuss common codes, emerging themes related to all 
student responses, and collectively developed a codebook (see Appendix A in SMs) which we 
used to systematically recode all responses (Saldaña, 2021; Chamraz; 2015). Four dimensions 
emerged: data-science offers: (a) understanding, and illuminates, explains, or provides insight 
into properties of soil by offering comparing and contrasting information or showing trends; (b) 
utility to address real-world problems in specific fields, using specific analytic techniques, by 
visualizing problems, saving time, and other vague applications; (c) is vaguely useful or relevant 
with unclear reasoning for why, and (d) that data-science is not relevant in their perspective.1 A 
summary of the results are presented in SM, Table S1, and examples of student responses for 
each code in Appendix A. Overall, we found that the most common code was utility perceptions, 
noted by 74% of students at pretest, 68% at posttest, then understanding (34% pre, 35% post), 
followed by vague explanations (15% pre, 16% post), and “not relevant” (5% pre, 3.7% post). 

 
1 The two coders independently applied the codebook to the full dataset. Interrater reliability analysis revealed high 
percent agreement (average 91%) but low kappa values due to infrequent code use and data sparsity. Coders met to 
reconcile discrepancies and arrived at consensus-codes for all reported analyses. 
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The second way in which we coded the qualitative data was using LIWC 2022 (Linguistic 
Inquiry and Word Count) a validated automated text analysis program (Boyd et al., 2022). 
Specifically, we assessed students’ use of words pertaining to analytical thinking dimensions, 
which demonstrate cognitive skill and engagement (see, e.g., Markowitz, 2023; Pennebaker et 
al., 2014) at pretest and posttest and compared them. Across the five dimensions of analytic 
cognitive processes (insight, causation, discrepancy, tentativeness, certitude, and differentiation), 
Wilcoxon signed rank tests revealed significantly lower levels of “discrepancy” language at 
posttest (p=.006, d= -.22), and significantly lower levels of “tentative- ness” at posttest (p=.006, 
d= -.19; see SM, Table S1 for means and SDs across analytic thinking).  
RQ3: Relevant Soil-Variables Identified 

We also used LIWC to analyze the list of variables that students provided at pretest and 
posttest that they perceived would be relevant in data-exploration. See SM, Table S2 for pre-post 
word counts, word clouds, and differences in frequencies. Comparing pre and post, it is evident 
that students became more specific in their language, salience of “moisture,” “temperature, “pH,” 
and other terms at posttest compared to pretest, while “soil” remains prominent across both. In a 
comparative analysis between pretest-and-posttest that highlights words that are more associated 
with pre vs post, we see that “animals” and “organisms” are more prominently related to the 
pretest, whereas more chemical and landscape factors are more prominent in the posttest. 

Discussion 
We sought to develop a learning intervention that promotes data-literacy skills as they apply 

to place-based soil microbiology learning experiences. We found that students significantly 
improved their perceptions of data science relevance and science knowledge from pretest to 
posttest, consistent with prior theory and evidence (Lombardi et al., 2016; Thacker et al., 2025).  

Student’s open-ended explanations revealed that students tended to explain data-science 
relevance in terms of its utility across medical and STEM professions and its capability to help 
scientists better understand properties of soil-data. This suggests that students are predisposed to 
expect data-tools to support their understanding of multidisciplinary topics and appear to be 
eager to learn and apply what they know to problem-solve in multiple domains.  

Automated text analysis revealed that students used less discrepant and tentative language at 
posttest compared to pretest when discussing data relevance, indicating improved levels of 
certainty. We also found that students identified lists of soil-related variables that became more 
specific and specialized over time. Terms such as “animals” and “organisms” became less 
emphasized in place of more relevant microbiological properties such as “pH”, “nitrogen,” and 
“chemical.” This suggests that students improved in terms of confidence and identification of 
relevant variables, both of which are critical for persisting in data-literate professions.  

Generally speaking, our findings demonstrate that data-literacy supports combined with 
place-based learning experiences can dually enhance students’ knowledge, motivation, and data-
literacy in terms of identifying analytical variables (Lombardi et al., 2016; Semken et al., 2017; 
Börner et al., 2019; Carlson & Johnston, 2014). We encourage researchers and practitioners to 
ground data-analysis experiences in real world and place-based scenarios to help students 
understand the scientific and societal factors underlying what they observe. 
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